

FERTI-TECH Ferti-ALLTracetm

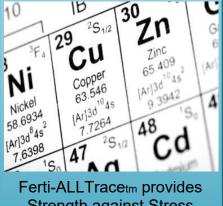
Broad Acre and General Purpose Strategic Trace Foliar

Ferti-ALLTracetm

Focused on Optimal and Balanced Trace Element Support, Ferti-ALLTracetm is specially formulated to ensure your Trace Element Applications are not wasted through counter-productive over-dosing of one element, or lacking effect through under-dosing all the required elements. Ferti-ALLTracetm addresses many forms of chlorophyll deficiency, yellowing, poor seed set, poor immune and pathogenic defence responses, low enzyme, calcium and nitrogen synthesis.

ALLTracetm	% w/v	
Zinc	6.1	
Sulphur	5.5	
Copper	3.1	
Nitrogen	1.7	
Manganese	1.6	
Boron	0.51	
Iron	0.16	
Molybdenum	0.20	
Nickel	0.12	
Cobalt	0.11	
Amino Acids*	1.67	
*AMINO ACIDS LYSINE AND THREONINE		
SIGNIFICANTLY IMPROVE TRACE RESULTS		

COPPER, ZINC, MG/MO. ARE
ESSENTIAL FOR OPTIMAL ENZYME
ACTIVITY. ENZYMES ARE BIOLOGICAL
'CATALYSTS' THAT DRAMATICALLY
IMPROVE THE RATE AND EFFICIENCY
OF CHEMICAL REACTIONS AND PLANT
PRODUCTIVITY


Recommended Dosage Rate (Use Tissue and Sap Testing for Best Analysis and Required Rate)

Broad Acre Cropping

- Apply 1 3 Litres per Hectare **Pasture**
- Apply 1 2 Litres per Hectare **Horticulture**
- Apply 2 4 litres per Hectare
- Repeat per foliar or fertigation as Tests indicate.


Nitrogen (UAN) & Other Additions

- Mix with UAN up to 5:1
- Do not Mix Neat, Add to Cart
- Suitable for use with other Ferti-Tech Supplemental Nutrition.
- Subject to FTA Advice and Jar Test
- SG 1.32 g/cm3 pH 1.5

Ferti-ALLTracetm provides

Strength against Stress
Manganese, Copper and
Zinc all combine to ensure a
strong, nutritionally based
resistance to pests and
disease. Boron,
Molybdenum and Nickel
provide Nitrogen and
Calcium Efficiency

HIGH LEVEL TRACE FORMULATION - EG. MOLYBDENUM 0.2% W/V = 2GM PER LITRE = 2000 MILLIGRAMS

PER LITRE

Ferti-ALLTracetm has Amino Acids (including Lysine) at Very Significant Levels

- Amino Acids are critical to the proper functioning of life and nutritional synthesis
- Lysine plays a major role in Calcium Absorption and the synthesis of Nitrogen
- ALLTracetm also contains other Amino Acids to buffer Nitrogen Burning
- Also Aspartates and Glutamates for a much stronger Amino Acid Activity Level

Suitable for all Broad Acre Cropping, Pasture, Centre Pivot and Boom Spray Foliar Applications.

Ferti-ALLTracetm
The Balanced and

Smart Way to Raise Trace Levels without Compromising other Trace Nutrient Ratios!

Ferti-Tech - Carbon Systems Agronomy
PO Box 9129 PICTON, WA 6229 Ph: (08) 9725 6877 Freecall 1300 885 474
Email: info@fertitech.com Website: www.fertitech.com

Ferti-ALLTrace is a balanced and complete formulation that will address many Trace Element needs quickly and efficiently. "Better Soils, Crops and Profits, You Can Measure and See"

NUTRIENTS	SYMPTONS OF DEFICIENCIES	ROLE
Zinc (Zn)	 Interveinal chlorosis (yellowing) 	Synthesis of plant growth substances
	Light yellow or white areas	Involved in enzyme systems
	Often occurs in younger leaves first	Essential for promotion of certain metabolic reactions
		Necessary for production of chlorophyll and
		carbohydrates
Copper (Cu)	Young leaves die	Chlorophyll formation
	Chlorosis	Catalysis in several plant reactions
	Failure to set seed	Cell wall formation
	 Rolling and coiling of new leaves 	Higher polymers and protein formation
	Leaf up turns light green to cream	
Manganese	 Interveinal chlorosis 	Part of enzyme systems in plants
(Mn)	When severe, necrotic spots or streaks	Aids chlorophyll synthesis
	may form	Promotes germination
	 Often occurs first on young leaves 	Accelerates maturity of the plant
		Increase the availability of phosphorus and calcium
Boron (B)	Death of growing points and	Germination of pollen grains
	development of a 'witch's broom'	Seed and cell formation
	effect	Sugar translocation
	Poor seed set	Protein formation
Iron (Fe)	Interveinal chlorosis with green veins	Catalyst in the formation of chlorophyll
	In severe case may mean total leaching	Oxygen carrier
	of young foliage followed by necrosis	
	Occurs first on young leaves	
Molybdenum	In legumes, a general paleness	Changing nitrates to ammonium
(Mo)	develops	 Converting inorganic – P to organic forms
	Poor nodulation in legumes	
	In non-legumes, a mottled pale	
	appearance	
Nickel (Ni)	Necrotic Spots and plant cell lesions	Key element in the proper functioning of the urease
	Nitrate burn	enzyme in nitrogen assimilation.
	Residual nitrogen inefficiencies.	Zinc and Iron co-factor replacement in some plants.
- 1 to (5.)		
Cobalt (Co)	Yellowing and chlorosis in Legumes due	Essential for Vitamin B12 production in animals.
	to poor rhizobium development.	Proper rhizobium nitrogen fixation and performance.
	Poor nitrogen assimilation in many	Soil bacteria stimulation.
	other plants.	
	Mucosal disease and mange in animals.	
Amino Acids	Lack of vigour	Building blocks of protein.
	Susceptibility to disease, necrosis, rot	Essential elements for the proper expression of
	and general reversal of fertility and	growth and gene replication.
	health until death.	
	 Nothing works without Amino Acids. 	